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Monte Carlo renormalisation group approach to critical
percolation behaviour in three dimensions: simple cubic lattice
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Abstract. A Monte Carlo renormalisation group approach using a scaling transformation
in real space is applied to the critical properties for the site percolation problem on the
simple cubic lattice. We find a sequence of estimates for the critical concentration p. and
the eigenvalue A at various values of the rescaling length b. Extrapolation of these sequences
to the limit b - o0 yields the site percolation threshold p, = 0.311573 3933 and the connected-
ness length exponent v = 0.88 £0.04.

1. Introduction

Percolation has been actively studied using both momentum-space and position-space
renormalisation group approaches. A variety of position-space renormalisation group
approaches have been developed recently, and some of them are highly promising for
the study of the critical percolation phenomena.

In this paper we present the position-space renormalisation group approach for
the three-dimensional site percolation problem on the simple cubic lattice with a
sequence of cells of ever increasing size. Our renormalisation method is based on the
block formulation used in the derivation of the exact critical percolation probability
for the simple cubic lattice with simplest cell size (Yuge 1979). For other renormalisa-
tion group approaches to percolation, see Harris et al (1975), Young and Stinchcombe
(1975), and Reynolds et al (1978, 1980).

The technique we use for determination of the fixed point p* and the connectedness
length exponent » is the Monte Carlo renormalisation group approach (Reynolds et
al 1980). For a two-dimensional lattice, Monte Carlo renormalisation studies has so
far been performed by several investigators who have succeeded in obtaining a precise
estimate of the percolation threshold (Reynolds et al 1980, Vicsek and Kertész 1981,
Derrida and de Seze 1982, Djordjevic et al 1982). There has, however, been no attempt
to apply this approach to the three-dimensional percolation system.

The layout of the paper is as follows. In § 2, we give some principles of the real
space renormalisation group approach to percolation and demonstrate with an example
using small cells. In § 3, we give a brief review of this Monte Carlo technique and the
results obtained by the renormalisation group approach. Then we present sequences
for the values of the critical percolation probability and the scaling power v from
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which the critical exponent may be obtained. We also discuss how extrapolation of
these sequences to the limit of infinite cell size leads to numerical results.

2. Renormalisation group approach to percolation

We start by partitioning a lattice into cells which cover the lattice and maintain its
original symmetry. These cells will play the role of renormalised sites; given that the
sites are independently occupied with probability p, then the occupation probability
p’ for the site of the new lattice may be derived from the renormalisation transformation

p'=R(p;b) (1)

where R(p; b) is the probability which connects the cell either horizontally or vertically
and b is the change of scale of length. The simplest example is b = 2. The basic scaling
procedure is defined by a simple renormalisation transformation on finite lattices. In
figure 1, we show how the basic scaling lattice (full line) scales into the new lattice
(broken line) with a scale factor b =2, the cell with the black sites of the 2x2x2
lattice scales into a single white site with probability p’. The sites in the original lattice
are independently present (conducting) with probability 1 ~ p. When an electric voltage
is applied to the cell sandwiched between two electrodes A and B in figure 1(b), a
conductive cell is defined as a graph in which a continuous conducting path from
electrode A to electrode B exists. The transformed probability R(p; b) is defined as
the probability of the cell being conductive when the cell is sandwiched between two
plane electrodes. We can obtain the transformed probability from the combinations
of paths contributing to the connectivity according to the exclusion-inclusion principle:

R(p; b=2)=4p*(1-p)°+24p°(1-p)°+54p*(1 - p)*

+56p°(1-p)*+28p°(1-p)*+8p'(1~p)+p°. (2)
The function R(p; b) has been evaluated for b up to 50 by Monte Carlo methods. As
b increases, R(p; b) become sharper and approaches the step function.

Equation (1) serves as the highly approximate renormalisation group transformation
with fixed points given by

p*(b)=R(p*; b). (3)

-y

(a) (6)

Figure 1. (a) Transformation of the simple cubic site lattice: the full line refers to the
original lattice and the broken line expresses the new lattice with the scale factor b =2.
(b) Cell with eight sites sandwiched between two plane electrodes A and B.
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A non-trivial fixed point gives the critical percolation probability p. for the finite cell
of size b. From equations (2) and (3), we find two trivial fixed points at p*=0, 1, and
also a non-trivial fixed point at

p*(b=2)=0.2818. (4)
From the fixed point p* of equation (1), the eigenvalue A is defined by
| _dR(p: b) (s)
dp p=p"
from which we determine the exponent v through
v=Inb/In A. (6)

For the simplest example b =2, the eigenvalue and the connectedness length exponent
are given from the scaling transformation (2) by

A(b=2)=1.7588 v(b=2)=1.2276. (7)

3. Monte Carlo renormalisation group and determination of R(p; b)

We consider here the Monte Carlo renormalisation group for the percolation problem
with a sequence of cells up to a cell size of 125 000 sites. We first define R(p; b) to
be the connecting probability. Then we determine the underlying probability density
function L(p; b) from

P
R(p; b)=J L(p’; b) dp’ (8)
0
where L(p; b) dp gives the probability that a bx bx b cell first percolates when the
occupation probability lies between p and p+dp. In other words, R(p; b) is the
cumulative distribution function corresponding to the probability density function
L(p; b). The eigenvalue is a value of the density function L{p; b) at p=p*:
| 4R(p: b)
dp

We present the results of our renormalisation group approach for various cell sizes
on the simple cubic lattice in table 1. The error bars on all our Monte Carlo data are
derived by comparing the values obtained using different subsets of the data and taking
their mean-square errors.

We may extrapolate our results to the b - co limit from Monte Carlo results for a
sequence of values of b. We expect from finite-size scaling arguments that

A~b7VY, (10)

=L(p*; b). 9)

*

p=p

In figure 2 we plot log A (b) against log b. The slope of log A(b) against log b gives
the estimated value of ». This procedure leads to » = 0.88 £0.04, where the error bars
are obtained by comparing the results of least-square fits with successive data points
sampled from the set. Our estimated value is somewhat larger than the Monte Carlo
estimate »=08=%0.1 (Sur et al 1976). Heerman and Stauffer (1981) found v=
0.89 £0.01 through Monte Carlo simulations. The connectedness length exponent for
the Delaunay network is calculated as » =0.88+0.05 from Monte Carlo simulations
(Jerauld er al 1984). The best estimate of the exponent v in three dimensions is
v =0.88+£0.02 as found by Gaunt and Sykes (1983) using series expansions.



Y Yuge and M Hori

3526

180 $0'0F88°0 10000, STIED S000°0 F P60£°0 20000 GT1E0 ©
$£6°0 0100 F 1160 659 TTFE9S Y0000 FZIIED Y0000 F THIE0 $000°0F 601€0 €172 0s
0560 810°0F286°0 98y IEF8Ty 2000°0F0ZLE0 20000 £ $SI€0 20000 F STIE0 L6 1 ov
$56°0 LEOOFPTOT Top EPFEIE T0000F1T1E0 2000°0FS91E0 £0000F €T1E0 055 ¢ vE
€60 670°0F 1860 89¢ SEFLIE $000°0 % TTICO £000'0 ¥ TLIEO Y0000 FHTIE0 9L T ot
8560 110°0 78660 8°8C 60FTST £000°0 F CTIE0 £000°0 ¥ £81€°0 POO0'0F ETIE0 §56 6 sT
8£6°0 910°0F$00'T VT 01EL6I 20000+ LTIE0 £000°0 ¥ LOZE'0 £000°0F STIE0 5068 0z
9960 TL0'0F9001 661 90FL L 70000 FSTIE0 £000°0 F 8120 Z000°0F TI1E0 LLS b1 81
960 Z100F0Z0'1 681 SOFI91 £000°0F £2I€0 £000°0 % 61Z€0 £000°0 ¥ 801£0 66 91 L
1960 9LO0FSHO'L 9L 90FTHI £000°0 F IE1€0 T000°0 F 9£TE0 £000°0F 9110 89€ 91 91
1860 1200 % £20°1 g1 $0FL'pl 70000 F LTIE0 Z000°0 F 6£7€°0 T0000F [T1€0 9z$ 81 S
L86°0 LOOOFSZOT vzl TOFEI 20000 F IE1E0 T000°0 F ££T€0 2000°0 FTLIE0 06t OF Al
9660 S000F LEO'] It INESRT £000°0 FPEIE0 £000°0 + 882€°0 £000°0FZIIE0 9z¥ 8¢ 1
£86°0 SIO0F PO’ ot EOFT6 £000°0 F9E1£0 £000°0 F LOEE0 £0000F [11£0 09 8¢ o1
$66°0 600°0F 850’ 16 PIOFPL'S 20000 F £E1€0 2000°0 ¥ €TEE0 £000°0 F S01€0 TILbL 6
6560 PLO0FL90° 9L STOFO0T'9 2000°0 ¥ 8E1€°0 T000°0 F 68€€0 £000°0 F 660£°0 LL9 701 L
920'1 T100F €601 8 LOOFIEY £000°0F 1EI€0 £000°0 ¥ 981€°0 £000°0 ¥ ZLOE0 000 001 $

7280'1 9ULTTT vL68'T 885L'1 001€°0 686£°0 81820 exy z
Wa a Wy ' (t=02))d (i=2)4d «d suonesifeas q

Jo ON

‘K[2anoadsas € s1 (g ‘d )y uonouny
UONQUISIP SANB[MWND 3y} YoIym I8 IN[EA Y} pUE UBIPIW 3Yy) 0 12)31 'd pue ''d sannuenb ay) -s0me| oiqnd 3jduns 2yl uo s)jnsal oj1e)) ANUOW pue wexy °| IAqe,
nnquIsip aal ) Yoy q + + n YL 9ot q [t 1 1red P q4°1 L



Monte Carlo renormalisation group for percolation 3527

—8 3

T

10

A2

T T TTYTT

T

1 5 10 50 100
b

Figure 2. Determination of the critical exponent v from the log-log plot of the eigenvalue
A against the scale factor b. From the slope of this line we obtain the exponent estimate
v =10.88+0.04,

The renormalisation group approach has an advantage in that one can systematically
consider finite-size cells with different b. We find that the sequence p*(b) varies
smoothly and predictably with b, following the relation

p*(b)—p(b=00)~b""" (11)

suggested by finite-size scaling considerations. In figure 3 we plot p*(b) against b™"/*,
with a trial value of »=0.88. Extrapolating a sequence of estimate for p*(b) for a
range of b from 2 to 50, we find the estimate

p*(b=00)=0.31157530% (12)
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Figure 3. Extrapolation of the sequence of fixed points p*(b). This curve approaches an
estimate of p.=0.311 52 as b>00. We have chosen the tria] value of v = 0.88 for this plot.
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where the error bars are obtained by comparing the results of least-square fits with
successive data points sampled from the set, and also with the values of the individual
data points varying within their own error bars. Our estimate is in good agreement
with the most accurate previous estimates, p.=0.3115+0.0005 obtained by Monte
Carlo experiments (Sur et al 1976), and 0.3117 +0.0003 obtained by the series expansion
method (Gaunt and Sykes 1983).

In the renormalisation group analysis presented thus far, we have seen that the
non-trivial fixed point for finite b gives a good estimate of the critical probability. As
an alternate approximation we corsider the 100c-percentile p* (b; ¢) of the renormalisa-
tion function, defined by

P
J L(p;b)dp'=R(p*; b)=c (13)
0

where 0< ¢ <1. When c is equal to }, p"(b; ¢) expresses the median of the distribution
function R(p; b). As the cell size approaches infinity, p*(b; ¢) converges to p. and
therefore serves as an approximation for the critical percolation probability. Since the
rate of convergence of p*(b; ¢) depends on ¢, the problem for us is to determine the
best choice for c.

In the two-dimensional case, the exact relation

R(pe; b) =3 (14)

holds for several types of lattices with finite size. In fact, (14) reduces to a known
expression

RG; b)= (15)

[SIE

for the site percolation on self-matching lattices as well as for the bond percolation
on self-dual lattices. Furthermore, formula (14) applies to the bond problem on the
triangular and the honeycomb lattices. The existence of (14) suggests that the value
of ¢ should be chosen to be § in two dimensions. In the three-dimensional case, we
have at present no criterion for the determination of c, but we conjecture that ¢ =3 is
more suitable than ¢ =1.

Let us take some values of ¢ near ;. The estimates p*(b; ¢) for ¢ = 0.28, 0.29, 0.30,
0.31, 0.32, 0.33, 0.34, 0.35, 0.40, 0.45 and 0.50 are presented in table 2. In addition,
for large b, (p*(b; ¢) - p.(b; ¢)) should scale as b™'"*, Thus in figure 4 we have plotted
p*(b; ¢) against b~"*, with » =0.88, in complete analogy with the plot for p* in figure
3. These estimated p*(b; c) essentially agree, giving an extrapolated value of p.=
0.3115.

We investigate again the relationship between finite-size scaling and the renormalisa-
tion group approach. The eigenvalue of the renormalisation group transformation is
given by the value of the density function L(p; b) at p=p*. As the cell size becomes
infinite, L(p; b) and R(p; b) approach a delta function and a step function, respec-
tively. Both L(p*; b) and L(p"; b) approach the eigenvalue A. Provided the cell size
b is reasonably large, we can approximate the fixed point by L(p™; b). Therefore we
approximate the fixed point by p*=p", the concentration at which the cumulative
distribution function R(p; b) equal ¢. The ‘eigenvalue’ may be expressed as

dR(p;
R (16)

P=p
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Figure 4. Finite-size scaling extrapolation of the sequence of p™(b; ¢). We have chosen
the trial value of »=0.88. The plot is similar to figure 3 where p*(b) is extrapolated.

! bl LLLY i [
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Figure 5. Dependence on log b of A?7 (b; ¢), for ¢ =0.30, 0.35, 0.40, 0.45 and 0.50. These
plots have the same slope. The plots are similar to figure 3.
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which is also expected to follow the relation
A(pT)~b7M". (17)

In figure 5 we have plotted A?”(b; ¢) against b~"/* for ¢ =0.30, 0.35, 0.40, 0.45 and
0.50, in complete analogy with the plot in figure 2. The slope of log A" "'(b; ¢) against
log b essentially agrees with an extrapolated value of » =0.88.

4. Conclusion

We have shown that critical properties for the site percolation problem on the simple
cubic lattice can be obtained by extrapolating a sequence of Monte Carlo renormalisa-
tion group calculations to b - o for finite cells of size b. To obtain the percolation
threshold p. and the connectedness length exponent », we calculate p*(b), A(b),
p*(b; ¢) and A‘?7(b; c) for finite cells by the renormalisation group technique. Then
we find sequences for the critical percolation concentration p.(b) and the eigenvalue
A(b) of a finite size. Furthermore, we find that sequences for the estimates p*(b; c)
and A?7(b; ¢) also obey a power law. For the two-dimensional site percolation
problem the best choice of ¢ is found to be 3, but ¢ = 3§ seems to be more adequate in
three dimensions.

Our best estimates for the critical percolation probability p. and the connectedness
length exponent v obtained by these scaling laws are, for the simple cubic site lattice,

P=0.3115%3005%

(18)
v=0.88+0.04.

Our estimate v agrees with the estimate » =0.88+0.02 of Gaunt and Sykes (1983)
obtained by using series expansions.

Although the above arguments have been perforce limited to the simple cubic
lattice, the basic idea is easily incorporated into common approximation methods for
any lattice and we expect that it be applied advantageously to a wide variety of
problems. Extension of the present renormalisation analysis to more complicated
lattices will be presented in the near future.
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