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percolation behaviour in three dimensions: simple cubic lattice 
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Department of Applied Physics, Faculty of Science, Tokyo Institute of Technology, 
Meguroku, Tokyo, Japan 
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Abstract. A Monte Carlo renormalisation group approach using a scaling transformation 
in real space is applied to the critical properties for the site percolation problem on the 
simple cubic lattice. We find a sequence of estimates for the critical concentration p c  and 
the eigenvalue A at various values of the rescaling length b. Extrapolation of these sequences 
to the limit b + yields the site percolation threshold pc  = 0.31 15:; :ggj and the connected- 
ness length exponent U = 0.88 * 0.04. 

1. Introduction 

Percolation has been actively studied using both momentum-space and position-space 
renormalisation group approaches. A variety of position-space renormalisation group 
approaches have been developed recently, and some of them are highly promising for 
the study of the critical percolation phenomena. 

In this paper we present the position-space renormalisation group approach for 
the three-dimensional site percolation problem on the simple cubic lattice with a 
sequence of cells of ever increasing size. Our renormalisation method is based on the 
block formulation used in the derivation of the exact critical percolation probability 
for the simple cubic lattice with simplest cell size (Yuge 1979). For other renormalisa- 
tion group approaches to percolation, see Harris et a1 (1975), Young and Stinchcombe 
(1975), and Reynolds et al (1978, 1980). 

The technique we use for determination of the fixed point p *  and the connectedness 
length exponent v is the Monte Carlo renormalisation group approach (Reynolds et 
a1 1980). For a two-dimensional lattice, Monte Carlo renormalisation studies has so 
far been performed by several investigators who have succeeded in obtaining a precise 
estimate of the percolation threshold (Reynolds et a1 1980, Vicsek and KertCsz 1981, 
Derrida and de Seze 1982, Djordjevic et a1 1982). There has, however, been no attempt 
to apply this approach to the three-dimensional percolation system. 

The layout of the paper is as follows. In 0 2, we give some principles of the real 
space renormalisation group approach to percolation and demonstrate with an example 
using small cells. In 9 3, we give a brief review of this Monte Carlo technique and the 
results obtained by the renormalisation group approach. Then we present sequences 
for the values of the critical percolation probability and the scaling power v from 
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which the critical exponent may be obtained. We also discuss how extrapolation of 
these sequences to the limit of infinite cell size leads to numerical results. 
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2. Renormalisation group approach to percolation 

We start by partitioning a lattice into cells which cover the lattice and maintain its 
original symmetry. These cells will play the role of renormalised sites; given that the 
sites are independently occupied with probability p ,  then the occupation probability 
p'  for the site of the new lattice may be derived from the renormalisation transformation 

p ' =  R ( p ;  b )  (1) 

where R(  p ;  b )  is the probability which connects the cell either horizontally or vertically 
and b is the change of scale of length. The simplest example is b = 2. The basic scaling 
procedure is defined by a simple renormalisation transformation on finite lattices. In 
figure 1,  we show how the basic scaling lattice (full line) scales into the new lattice 
(broken line) with a scale factor b = 2; the cell with the black sites of the 2 x 2 x 2 
lattice scales into a single white site with probability p ' .  The sites in the original lattice 
are independently present (conducting) with probability 1 - p .  When an electric voltage 
is applied to the cell sandwiched between two electrodes A and B in figure l ( b ) ,  a 
conductive cell is defined as a graph in which a continuous conducting path from 
electrode A to electrode B exists. The transformed probability R ( p ;  b )  is defined as 
the probability of the cell being conductive when the cell is sandwiched between two 
plane electrodes. We can obtain the transformed probability from the combinations 
of paths contributing to the connectivity according to the exclusion-inclusion principle: 

R ( p ;  b = 2 )  = 4p2( 1 -p)'+24p3(1 - ~ ) ~ + 5 4 p ~ (  1 - P ) ~  

+56p5(1 - ~ ) ~ + 2 8 p ~ ( l  -p)'+8p7(1 - p ) + p 8 .  (2) 

The function R ( p ;  b )  has been evaluated for b up to 50 by Monte Carlo methods. As 
b increases, R ( p ;  b )  become sharper and approaches the step function. 

Equation ( 1) serves as the highly approximate renormalisation group transformation 
with fixed points given by 

p * (  b )  = R(  p * ;  b ) .  ( 3 )  

(a1 (61 

Figure 1. ( a )  Transformation of the simple cubic site lattice: the full line refers to the 
original lattice and the broken line expresses the new lattice with the scale factor b = 2. 
( b )  Cell with eight sites sandwiched between two plane electrodes A and B. 
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A non-trivial fixed point gives the critical percolation probability pc for the finite cell 
of size b. From equations (2) and (3) ,  we find two trivial fixed points at p* = 0, 1, and 
also a non-trivial fixed point at 

p*(b  = 2 )  = 0.2818. (4) 

From the fixed point p* of equation ( l ) ,  the eigenvalue A is defined by 

A =  

from which we determine the exponent v through 

Y = In blln A. 

For the simplest example b = 2, the eigenvalue and the connectedness length exponent 
are given from the scaling transformation (2) by 

A ( b  = 2) = 1.7588 v ( b  = 2) = 1.2276. (7) 

3. Monte Carlo renormalisation group and determination of R ( p ;  b )  

We consider here the Monte Carlo renormalisation group for the percolation problem 
with a sequence of cells up to a cell size of 125 000 sites. We first define R ( p ;  b )  to 
be the connecting probability. Then we determine the underlying probability density 
function L ( p ;  b )  from 

R ( p ;  b )  = lop U p ’ ;  b )  dp‘ (8) 

where L( p ;  b )  d p  gives the probability that a b x b x b cell first percolates when the 
occupation probability lies between p and p+dp. In other words, R ( p ;  b )  is the 
cumulative distribution function corresponding to the probability density function 
L( p ;  b ) .  The eigenvalue is a value of the density function L( p ;  b )  at p = p*: 

We present the results of our renormalisation group approach for various cell sizes 
on the simple cubic lattice in table 1. The error bars on all our Monte Carlo data are 
derived by comparing the values obtained using different subsets of the data and taking 
their mean-square errors. 

We may extrapolate our results to the b + m  limit from Monte Carlo results for a 
sequence of values of b. We expect from finite-size scaling arguments that 

(10) A - b-1:” 

In figure 2 we plot log A ( b )  against log b. The slope of log A ( b )  against log b gives 
the estimated value of v. This procedure leads to v = 0.88 f 0.04, where the error bars 
are obtained by comparing the results of least-square fits with successive data points 
sampled from the set. Our estimated value is somewhat larger than the Monte Carlo 
estimate v=0.8*0.1 (Sur et a1 1976). Heerman and Stauffer (1981) found v =  
0.89 f 0.01 through Monte Carlo simulations. The connectedness length exponent for 
the Delaunay network is calculated as v = 0.88 f 0.05 from Monte Carlo simulations 
(Jerauld et al 1984). The best estimate of the exponent v in three dimensions is 
Y = 0.88 * 0.02 as found by Gaunt and Sykes (1983) using series expansions. 
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b 

Figure 2. Determination of the critical exponent v from the log-log plot of the eigenvalue 
A against the scale factor b. From the slope of this line we obtain the exponent estimate 
U = 0.88 f 0.04. 

The renormalisation group approach has an advantage in that one can systematically 
consider finite-size cells with different b. We find that the sequence p * ( b )  varies 
smoothly and predictably with b, following the relation 

p * ( b )  -pc (b  =CO)-  b-I"' ( 1 1 )  

suggested by finite-size scaling considerations. In figure 3 we plot p * ( b )  against b-"", 
with a trial value of v = 0.88. Extrapolating a sequence of estimate for p * ( b )  for a 
range of b from 2 to 50, we find the estimate 

p*(b=oo)=0.3115-0.0003 +0.0004 

p * ( b )  0311 52 

Figure 3. Extrapolation of the sequence of fixed points p * ( b ) .  This curve approaches an 
estimate of p c  = 0.31 1 52 as b + W. We have chosen the trial value of U = 0.88 for this plot. 
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where the error bars are obtained by comparing the results of least-square fits with 
successive data points sampled from the set, and also with the values of the individual 
data points varying within their own error bars. Our estimate is in good agreement 
with the most accurate previous estimates, p c  = 0.31 15 f 0.0005 obtained by Monte 
Carlo experiments (Sur er al1976), and 0.3117 * 0.0003 obtained by the series expansion 
method (Gaunt and Sykes 1983). 

In the renormalisation group analysis presented thus far, we have seen that the 
non-trivial fixed point for finite b gives a good estimate of the critical probability. As 
an alternate approximation we consider the 100c-percentile p’( b;  c) of the renormalisa- 
tion function, defined by 

I,’ L ( p ’ ;  b )  dp‘= R (  p’; b )  = c 

where 0 < c < 1.  When c is equal to f,  p’( b ;  c) expresses the median of the distribution 
function R ( p ;  b) .  As the cell size approaches infinity, p’ (b ;  c) converges to p c  and 
therefore serves as an approximation for the critical percolation probability. Since the 
rate of convergence of p + ( b ;  c) depends on c, the problem for us is to determine the 
best choice for c. 

In the two-dimensional case, the exact relation 

R ( p c ;  b )  =t  (14) 

holds for several types of lattices with finite size. In fact, (14) reduces to a known 
expression 

R(f;  b )  = f  (15)  

for the site percolation on self-matching lattices as well as for the bond percolation 
on self-dual lattices. Furthermore, formula (14) applies to the bond problem on the 
triangular and the honeycomb lattices. The existence of (14) suggests that the value 
of c should be chosen to be f in two dimensions. In the three-dimensional case, we 
have at present no criterion for the determination of c, but we conjecture that c = f is 
more suitable than c = 5. 

Let us take some values of c near 4. The estimates p’( b; c) for c = 0.28, 0.29, 0.30, 
0.31, 0.32, 0.33, 0.34, 0.35, 0.40, 0.45 and 0.50 are presented in table 2. In addition, 
for large b, (p ’ (  b;  c) - pc( b;  c)) should scale as b-””. Thus in figure 4 we have plotted 
p + ( b ;  c) against b-”“, with v = 0.88, in complete analogy with the plot for p* in figure 
3. These estimated p’(b; c) essentially agree, giving an extrapolated value of p c  = 
0.3115. 

We investigate again the relationship between finite-size scaling and the renormalisa- 
tion group approach. The eigenvalue of the renormalisation group transformation is 
given by the value of the density function L( p ;  b )  at p = p * .  As the cell size becomes 
infinite, L ( p ;  6) and R ( p ;  b )  approach a delta function and a step function, respec- 
tively. Both L( p * ;  b )  and L( p’; b )  approach the eigenvalue A. Provided the cell size 
b is reasonably large, we can approximate the fixed point by L(p’;  b) .  Therefore we 
approximate the fixed point by p* =pt,  the concentration at which the cumulative 
distribution function R ( p ;  b )  equal c. The ‘eigenvalue’ may be expressed as 
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We have chosen 
extrapolated. 

b 

Figure 5. Dependence on log b of A ( p f J  ( b ;  c), for c = 0.30, 0.35,0.40,0.45 and 0.50. These 
plots have the same slope. The plots are similar to figure 3. 
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which is also expected to follow the relation 

A ( p ’ )  - b-””. (17) 
In figure 5 we have plotted A(”+’(b; c )  against b-”” for c = 0.30, 0.35, 0.40, 0.45 and 
0.50, in complete analogy with the plot in figure 2. The slope of log A‘Pi ’ (b ;  c )  against 
log b essentially agrees with an extrapolated value of v = 0.88. 

4. Conclusion 

We have shown that critical properties for the site percolation problem on the simple 
cubic lattice can be obtained by extrapolating a sequence of Monte Carlo renormalisa- 
tion group calculations to b + m  for finite cells of size b. To obtain the percolation 
threshold p c  and the connectedness length exponent v, we calculate p * ( b ) ,  A ( b ) ,  
p’( b; c )  and A ( p + ) (  b;  c )  for finite cells by the renormalisation group technique. Then 
we find sequences for the critical percolation concentration pc( b )  and the eigenvalue 
A ( b )  of a finite size. Furthermore, we find that sequences for the estimates p + ( b ;  c )  
and A(”+)(b;  c )  also obey a power law. For the two-dimensional site percolation 
problem the best choice of c is found to be f, but c = seems to be more adequate in 
three dimensions. 

Our best estimates for the critical percolation probability pc  and the connectedness 
length exponent Y obtained by these scaling laws are, for the simple cubic site lattice, 

pc  = 0.3 1 15 ?::E:: 
v = 0.88 * 0.04. 

Our estimate v agrees with the estimate v=0.88*0.02 of Gaunt and Sykes (1983) 
obtained by using series expansions. 

Although the above arguments have been perforce limited to the simple cubic 
lattice, the basic idea is easily incorporated into common approximation methods for 
any lattice and we expect that it be applied advantageously to a wide variety of 
problems. Extension of the present renormalisation analysis to more complicated 
lattices will be presented in the near future. 
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